Абсолютный минимум - Страница 55


К оглавлению

55

Кроме того что 3d-электроны порождают первый ряд переходных металлов, они также ответственны за ещё одно важное молекулярное явление. Как уже говорилось, кислород будет образовывать две ковалентные связи (использовать совместно с другими атомами два электрона), чтобы достичь электронной конфигурации Ne. Пример тому — молекула воды HO. Сера, которая расположена прямо под кислородом, образует соединение HS, аналогичное HO. Однако она также может образовывать соединение SF, задействуя 3d-орбитали, которые близки по энергии к 3p-орбиталям. У кислорода нет подобных соединений, поскольку первый набор орбиталей (3d) расположен значительно выше по энергии, чем 2s- и 2p-орбитали, которые участвуют в образовании связей у элементов второй строки Периодической таблицы.

Первая серия переходных металлов завершается, когда заполнены все 3d-орбитали. Далее следует элемент галлий (Ga). Ga — это металл, и, подобно алюминию, он будет образовывать ионы с зарядом +3. Конфигурация, в которой 3d-орбитали целиком заполнены, является очень устойчивой, поэтому Ga образует только катионы с зарядом +3. Стабильность заполненных 3d-орбиталей также можно наблюдать на примере цинка. Zn образует только ионы с зарядом +2, отдавая два своих 4s-электрона. Вслед за Ga идут германий (Ge), мышьяк (As) и селен (Se), которые обычно образуют четыре, три и две ковалентные связи соответственно, чтобы получить замкнутую конфигурацию электронной оболочки, как у криптона (Kr). Дополнительные связи у Ge, As и Se, как и у элементов, расположенных непосредственно над ними, могут создаваться за счёт 4d-электронов, которые очень близки по энергии 4p-орбиталям. Следующий элемент — бром — является галогеном и образует анион с зарядом −1, чтобы достичь замкнутой конфигурации оболочки криптона. И наконец, завершает строку криптон, обладающий замкнутой оболочкой.

Более крупные атомы и лантаноиды с актиноидами

Элементы в пятой строке Периодической таблицы следуют той же схеме, что и в четвёртой строке. В пятой строке содержится вторая серия переходных металлов. Элементы шестой и седьмой строк ведут себя подобно занимающим четвёртую и пятую строки, за исключением наличия лантаноидов (первого внутреннего ряда переходных металлов) и актиноидов (второго внутреннего ряда переходных металлов). Они появляются в результате заполнения 4f- и 5f-орбиталей (см. диаграмму энергетических уровней для многоэлектронных атомов на рис. 11.1). Орбитали 4f (для лантаноидов с n=4) и 5f (для актиноидов с n=5) геометрически гораздо меньше орбиталей 6s и 6p, 7s и 7pn=6 и n=7), которые заполняются в шестой и седьмой строках, поскольку у них меньше главное квантовое число n. Самые внешние электроны (с наибольшим главным квантовым числом) определяют химические свойства атомов, то есть число валентных связей, которые они могут создавать, или ионов, которые они могут образовывать. Поэтому 4f- и 5f-орбитали не оказывают существенного влияния на химические свойства.

Лантаноиды начинаются с лантана (La). Энергетические уровни 4f расположены очень близко по энергии к уровням 5d (см. рис. 11.1). La следует за барием (Ba), у которого имеется два электрона на 6s-орбитали. У La на один электрон больше; этот электрон располагается на 5d-орбитали. Вслед за La заполняются 4f-орбитали. Лютеций (Lu, 71-й элемент) начинает третий ряд переходных металлов. У него два электрона на 6s-орбитали, 14 электронов на 4f-орбиталях и один электрон на 5d-орбитали. По химическим свойствам все лантаноиды очень похожи на La и Lu. Аналогичным образом актиноиды начинаются с актиния (Ac). После заполнения 5f-орбиталей 14 электронами лоуренсий (Lr, искусственно созданный 103-й элемент) начинает пятый ряд переходных металлов. Все актиноиды по химическим свойствам очень похожи на Ac и Lr.

Большинство элементов — металлы

В Периодической таблице используется цветовая разметка (разный тон клеток на рис. 11.4), выделяющая металлы, полуметаллы (полупроводники) и неметаллы (изоляторы). (Подробно квантовая теория, объясняющая, почему разные вещества являются металлами, полупроводниками или изоляторами, описывается в главе 19.) Из Периодической таблицы видно, что большинство элементов — это металлы. Нетрудно понять, почему это так. Элементы двух левых столбцов являются металлами, поскольку имеют один или два электрона сверх замкнутой электронной оболочки предшествующего благородного газа. Они легко могут отдать эти электроны и вернуться к замкнутой конфигурации оболочки. Поэтому когда эти вещества находятся в твёрдой форме, электроны в них подвижны, и они являются проводниками электричества. Добавление d-электронов в переходных рядах не отнимает у элементов эту способность отдавать самые внешние (с наибольшим n) s-электроны. Наличие d-электронов лишь увеличивает число электронов, которые могут быть отданы при определённых обстоятельствах. Добавление f-электронов также ничего не меняет. Поэтому в дополнение к двум левым столбцам таблицы все переходные ряды элементов являются металлами — обычно их называют переходными металлами.

Внутренние переходные ряды (в которых добавляются f-электроны) тоже являются металлами. Элементы, которые могут отдать три электрона, чтобы вернуться к предшествующей замкнутой конфигурации оболочки, такие как алюминий, также являются металлами. Вместе все они составляют большинство элементов. Неметаллы — это группа элементов в треугольной правой верхней части Периодической таблицы. Некоторые из них склонны образовывать ковалентные связи путём совместного использования электронов. Они не склонны отдавать электроны. Галогены предпочитают присоединять электроны или образовывать ковалентные связи. А благородные газы, в общем и целом, не желают ни присоединять, ни отдавать электроны, ни образовывать ковалентные связи. Таким образом, все эти элементы являются неметаллами. Когда эти вещества находятся в твёрдом состоянии, их атомы не склонны отдавать электроны, что необходимо для обеспечения электрической проводимости. Они являются изоляторами.

55