Абсолютный минимум - Страница 33


К оглавлению

33

EmV,

где m — масса мяча, а V — его скорость. Если мяч испытает слабые внешние воздействия, его скорость станет немного меньше и значение E тоже немного уменьшится. В этом идеальном ракетболе энергия может меняться непрерывным образом. Значение E может увеличиваться или уменьшаться произвольным образом в зависимости лишь от силы воздействия на мяч.

Другая важная особенность классического ракетбола — это возможность остановить мяч так, чтобы он неподвижно лежал на полу. В этой ситуации его скорость равна нулю: V=0. А раз V=0, то и E=0. При V=0 импульс тоже равен нулю, поскольку p=mV, так что импульс известен нам точно. Если мяч лежит на полу (V=0), то его положение известно. Если обозначить это положение x (см. рис. 8.2), то значение x будет находиться в интервале от 0 до L. Величина x не может принимать никакие другие значения, поскольку мяч находится на площадке (в ящике) и не может оказаться снаружи из-за идеальных стенок. Мяч можно поместить в определённое положение x на полу площадки, и тогда его положение будет известно точно. Это свойство макроскопической игровой площадки, даже идеальной. Это классическая система, и в ней можно точно и одновременно знать импульс p и положение x.

Площадка для игры в ракетбол имеет длину 12 м, диаметр мяча составляет 5,6 см, а его вес — около 0,04 кг. Очевидно, что игра в ракетбол описывается классической механикой. С помощью света можно следить за отскоками мяча туда-обратно, не влияя на них.

Частица в ящике — квантовый случай

Что изменится, если теперь мы перейдём к рассмотрению квантового ракетбола? Площадка остаётся идеальной, но теперь её длина не 12 м, а 1 нм (10 м). Кроме того, частица обладает массой электрона, равной 9,1∙10 кг, а не 0,04 кг. Таким образом, это задача о квантовой частице в ящике.

Сразу можно сказать, что наименьшая энергия квантовой частицы в ящике нанометрового размера не может быть нулевой. На классической ракетбольной площадке возможна скорость мяча V, равная нулю, а значит, нулевым может быть и импульс p=mV. Кроме того, положение мяча x имеет чётко определённое значение. Например, мяч может лежать неподвижно (V=0) точно посередине площадки, что соответствует x=L/2. В таком случае для нашего классического ракетбольного мяча ∆p=0 и ∆x=0. Значение произведения ∆x∙∆p=0 не соответствует принципу неопределённости Гейзенберга, что нормально, поскольку речь идёт о классической системе. Однако абсолютно малая частица в ящике нанометрового размера является квантовым объектом и должна подчиняться принципу неопределённости, утверждающему, что ∆x∙∆ph/4π. Если V=0 и x=L/2, то мы знаем одновременно x и p, а значит, ∆x∙∆p=0, как в классическом ракетболе. Для квантовой системы это невозможно. Таким образом, V не может быть равно нулю. Частица не может неподвижно пребывать в заданной точке. А если значение V ненулевое, то и значение E не может быть равно нулю. Принцип неопределённости говорит, что наименьшая энергия нашего квантового ракетбольного мяча не может быть нулевой. Квантовый мяч никогда не пребывает в неподвижности.

Значения энергии квантовой частицы в ящике

Какой энергией может обладать квантовая частица в ящике нанометровых размеров? На этот вопрос можно ответить без сложных расчётов, но сначала нам нужно вновь вернуться к волнам. В главе 6 мы говорили о волновых функциях свободных частиц. Волновая функция свободной частицы с определённым импульсом p — это волна, которая простирается по всему пространству. Таким образом, электрон с идеально определённым импульсом — это делокализованная волна, охватывающая всё пространство. Вероятность обнаружить свободный электрон всюду одинакова. Такой электрон обладает чётко определённой кинетической энергией EmV, поскольку имеет чётко определённый импульс p=mV.

Электрон в нанометровой коробке подобен нашей свободной частице в том, что касается внутренней области коробки, где Q=0. Внутри коробки отсутствует потенциал, а значит, нет и действующих на частицу сил. В этом отношении она очень похожа на свободную частицу, на которую тоже не действуют никакие силы. Однако есть важное различие между частицей в коробке и свободной частицей — это стенки ящика. Электрон в ящике находится только внутри ящика. Идеальный характер ящика не позволяет его волновой функции распространиться на всё пространство. Частица находится внутри ящика и никогда не может оказаться снаружи. Волновая функция задаёт амплитуду вероятности обнаружить частицу в некоторой области пространства. Это борновская интерпретация волновой функции. Если наш электрон может быть обнаружен только внутри ящика и никогда снаружи, то вероятность его обнаружения в ящике должна быть конечной, а вовне — нулевой. Если вероятность найти частицу вне ящика равна нулю, то и волновая функция должна быть равна нулю во всех точках вне ящика.

Итак, мы пришли к выводу, что волновая функция частицы в ящике подобна волновой функции свободной частицы, но волновая функция должна быть равна нулю вне ящика. В своей интерпретации природы квантовомеханической волновой функции Борн наложил некоторые физические ограничения на форму, которую может принимать волновая функция. Одно из них состоит в том, что хорошая волновая функция должна быть непрерывной. Это условие означает, что волновая функция должна плавно меняться от места к месту. Бесконечно малое изменение положения не может приводить к неожиданному скачку вероятности. Это очень простая мысль. Если вероятность обнаружить частицу в некоторой очень малой области пространства составляет, например, 1 %, то смещение на невообразимо малую величину не может вдруг сделать вероятность обнаружения частицы равной 50 %. Это ясно по изображениям волновых пакетов на рис. 6.7. Вероятность плавно меняется от места к месту. Это позволяет нам кое-что добавить к описанию волновых функций частицы в ящике помимо того факта, что они являются волнами с конечными амплитудами внутри ящика и нулевой амплитудой вовне. Поскольку волновая функция должна быть непрерывной, непосредственно у стенки ящика с внутренней стороны она должна иметь нулевую амплитуду, чтобы совпадать с нулевой амплитудой волновой функции вне ящика.

33