На рис. 3.4 световые лучи изображены прямыми линиями, но в любом реальном эксперименте лучи обладают некоторой шириной. Ось x на рисунке перпендикулярна биссектрисе угла (прямой, которая делит угол пополам), образованного пересекающимися лучами. Поскольку этот угол мал, ось x фактически перпендикулярна направлению распространения лучей и на данном рисунке имеет горизонтальное направление. На фрагменте, представленном в правой нижней части рисунка в увеличенном масштабе, показано, что видно вдоль оси x в области перекрытия. На графике по вертикальной оси отложена интенсивность света I, а по горизонтальной — положение вдоль оси x. Поскольку лучи пересекаются под небольшим углом, фазовое отношение между ними меняется вдоль оси x, и появляются чередующиеся области конструктивной и деструктивной интерференции. Интенсивность света меняется от максимального значения до нуля, снова до максимума и опять до нуля и так далее, и пересекающиеся световые волны порождают области конструктивной и деструктивной интерференции. Вблизи максимумов интенсивности световые волны приходят в фазе (0°, см. рис. 3.2) и складываются конструктивно, давая увеличение амплитуды. В точки нулевой интенсивности световые волны приходят со сдвигом по фазе на 180° (см. рис. 3.3) и складываются деструктивно — в точности гасят друг друга. Эту картину можно наблюдать, поместив в область перекрытия фотоплёнку или цифровую камеру и измерив интенсивность света в различных точках вдоль оси x.
При малом угле ширина интерференционных полос, то есть расстояние d между соседними пиками интенсивности или нулями, задаётся формулой d=λ∙θ, где λ — длина волны света, а θ — угол между пучками в радианах (1 радиан = 57,3°). Если используется красный свет с длиной волны 700 нм, а угол между пучками составляет 1°, то ширина интерференционных полос составит 40 мкм и на одном сантиметре их уместится 250. Такие полосы можно увидеть на плёнке или с помощью хорошей цифровой камеры. Если угол составит 0,1°, то интервал между полосами будет 0,4 мм, что можно увидеть невооружённым глазом. Если же угол будет 0,01° (это очень маленький угол), расстояние между интерференционными полосами составит 4 мм, то есть будет хорошо различимым. Чтобы получить такие 4-миллиметровые полосы, диаметр пересекающихся лучей должен быть намного больше 4 мм.
Как уже было сказано, в классическом представлении свет является электромагнитной волной, а его интенсивность пропорциональна квадрату амплитуды электрического поля (величины волны на рис. 3.1). В последующих рассуждениях мы не будем беспокоиться о единицах измерения. Задействовав множество констант, можно вывести все эти единицы, но этого не требуется для наших целей.
Пусть электрическое поле в пучке, прошедшем по одному из плеч интерферометра, имеет амплитуду 10. Тогда интенсивность составит 100 (10=100=10∙10). Другой луч также имеет I=100. Это значения интенсивности в том случае, когда мы не наблюдаем лучи в области перекрытия. Когда лучи разделены, сумма значений их интенсивности составляет 200. Что происходит в области перекрытия? Волны интерферируют — конструктивно в одних местах и деструктивно в других (см. рис. 3.4, справа внизу). Таким образом, для определения значений интенсивности в области перекрытия необходимо сложить амплитуды электрических полей, а затем возвести результат в квадрат. В точках максимальной интенсивности в области перекрытия волны идеально совпадают по фазе и складываются конструктивно. Электрическое поле первого луча добавляется к электрическому полю второго луча: E=10+10=20. В таком случае интенсивность на пике интерференционной картины составляет I=E=20=400. Интенсивность составляет 400, что вдвое больше интенсивности простой суммы двух лучей самих по себе, когда они не испытывают конструктивной интерференции. В нулях интерференционной картины волны взаимодействуют идеально деструктивно. Электрическое поле +10 складывается с электрическим полем −10 и даёт ноль. Электрическое поле равно нулю, и I=0. Таким образом, интерференционная картина создаётся чередующимися областями конструктивной и деструктивной интерференции электромагнитных волн. В некоторых местах волны складываются, и мы видим пик. В других местах они вычитаются и дают ноль. Интерференция — это хорошо известное свойство волн, а картина, которую она даёт в интерферометре, — прекрасный пример волнового явления.
Интерферометр и интерференционную картину, изображённые на рис. 3.4, можно во всех подробностях описать в рамках классической электромагнитной теории. Детали интерференционной картины можно вычислить из уравнений Максвелла. Этот и многие другие эксперименты, включая передачу радиоволн, можно описать классической теорией. Поэтому классическая теория, которая рассматривает свет как волны, считалась корректной вплоть до начала XX века. Однако в главе 4 рассказывается, как эйнштейновское объяснение одного явления — фотоэлектрического эффекта — потребовало фундаментального переосмысления всего элегантного и, казалось бы, непогрешимого построения классической электромагнитной теории.
В конце XIX века классическая электромагнитная теория была одним из величайших триумфов классической механики. Она могла объяснить результаты самых разнообразных экспериментальных наблюдений. Однако в начале XX века новые эксперименты создали серьёзные затруднения для классического волнового представления о свете, и прежде всего один эксперимент, который вместе со своим объяснением обнаружил фундаментальную проблему в, казалось бы, нерушимой волновой теории света.